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Incremental Rule Splitting in Generalized Evolving
Fuzzy Systems for Autonomous Drift Compensation

Edwin Lughofer, Mahardhika Pratama, Igor Skrjanc

Abstract—Gradual drifts in data streams are usually hard
to detect and often do not necessarily trigger the evolution
of new fuzzy rules during model adaptation steps in order to
represent the new, drifted data distribution(s) appropriately in
the fuzzy model. Over time, they thus lead to oversized rules
with untypically large local errors (typically also worsening the
global model error), as representing joint local data distributions
before and after a drift happened likewise. We therefore propose
an incremental rule splitting concept for generalized fuzzy rules
in order to autonomously compensate these negative effects of
gradual drifts. Our splitting condition is based 1.) on the local
error of rules measured in terms of a weighted contribution to
the whole model error and 2.) on the size of the rules measured
in terms of the volume of the associated clusters. We use the
concept of statistical process control in order to omit an extra
threshold parameter in our splitting condition. The splitting
technique relies on the eigen-decomposition of the rule covariance
matrix to adequately manipulate the largest eigenvector and
eigenvalues in order to retrieve the new centers and contours
of the two split rules. Furthermore, we guarantee sufficient
flexibility in adapting the shapes and consequents of the split
rules to the new drifted situation in the stream by integrating a
specific dynamic and smooth forgetting concept of older samples,
which formed the original (non-split) rules. Robustness against
outliers is guaranteed by the realization of a two-layer model
building process, where one layer represents the cluster partition
and the other layer the rule partition: only clusters becoming
significant over time are accepted as rules in the fuzzy model. The
splitting concepts are integrated in the generalized smart evolving
learning engine for fuzzy systems (termed as Gen-Smart-EFS)
and successfully tested on two real-world application scenarios,
engine test benches and rolling mills, the latter including a real-
occurring gradual drift (whose position in the data is known).
Results show clearly improved error trend lines over time when
splitting is applied, compared to the case when it is not applied:
reduction of the mean absolute model error by about one third
(rolling mills) and about one half (engine test benches).
keywords: data stream modeling, incremental rule splitting, gener-
alized evolving fuzzy systems, drift compensation, smooth forgetting,
robustness against outliers, two-layer model building

I. INTRODUCTION

A. Motivation and State-of-the-Art

Evolving intelligent systems [1] are nowadays applied in
many industrial fields of applications such as on-line qual-
ity control, on-line system identification and modeling for
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evolving smart sensors (eSensors), human-machine interac-
tion tasks, chemometric modeling, financial stock market
predictions, video processing etc., to address the needs of
nowadays complex processes including fast data streams [2],
huge data bases [3] or dynamically changing environments
[4]. Therefore, they are equipped with methodologies, which
are able to handle time-varying system dynamics [5], up-
coming new operation modes and systems behaviors [6] [7],
process drift and shift occurrences [8] [9] or new parameter
settings in the products and environments [10], adequately
and autonomously [11] and often in an on-line and real-time
manner [12]. Thereby, they contain and make use of two core
functionalities, 1.) recursive adaptation of model parameters
and 2.) dynamic knowledge expansion and shrinkage on the
fly by component evolution and merging. Recursive adaptation
of model parameters is usually able to compensate smaller
changes in the process and especially performs refinements
of originally estimated parameters from small data sets, thus
increasing their statistical significance. It can be often con-
ducted in exact manner (e.g., by using recursive least squares,
incremental Levenberg-Marquardt, incremental Gauss Newton
and spin-offs [13]), which means that the convergence to
the real optimal solution of parameters takes place in each
incremental adaptation step. Automatic knowledge expansion
becomes necessary whenever significant novelty content is
reflected in new incoming stream samples, showing feature
range expansions or fillings of gaps in the previous data. In
this case, new structural model components need to be evolved
to appropriately represent the expanded situation and thus to
avoid nasty extrapolation effects [14].

Evolving fuzzy systems (EFS) [15], as a sub-topic of
evolving intelligent systems, enjoy a wide attraction in the
evolving intelligent systems community [1] due to their ability
to 1.) evolve structural components on the fly to account
for knowledge expansion and 2.) to represent the evolved
knowledge in a transparent and finally interpretable way (in
form of rules), while still assuring high precision of the models
due to their universal approximation capability [16] — they
are in fact well-known for providing models with a fruitful
balance between precision and interpretation, as, e.g., deeply
analyzed in [17] for the standard batch case and in [18] for the
real on-line case. Recursive parameter adaptation is typically
conducted with the usage of recursive fuzzily weighted least
squares (RFWLS) [19] [20] [21] [22] in order to achieve
the local learning effect, while rule evolution and merging is
addressed based on various rule evolution and merging criteria
[23] (depending on the EFS approach used [24]).

A particular challenge in data stream mining and evolving
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modeling from streams arise when some dynamic changes in
form of gradual drifts or, in general, of gradual growth of
structural components (rules) appear over time. The graduality
thereby is small enough such that it does not trigger the
evolution of new rules (through the violation of the rule
evolution criterion/criteria), but it is also large enough that
it affects the rule update significantly. This means that a rule
may grow larger and larger over time based on new incoming
samples and thus may get huge in size and/or may cover het-
erogeneous data clouds internally (as occurred before and after
the drift) — as a result of continuous parameter adaptation.
This may cause significant downtrends in local errors of the
model components (rules) and thus may deteriorate model’s
generalization performance, because a rule suffers from an
explosion of generality but loses its specificity — see also
Section III for a more detailed problem description.

Forgetting mechanisms (as, e.g., proposed in [25] [26]) for
outdating older rule positions may indeed prevent the rules to
grow in size and local error too much, but they typically induce
an additional parameter (determining the degree of forgetting
termed as forgetting factor) [27]: setting it adequately in
advance or even adaptively according to the stream (drift)
characteristics is challenging [9] and still not a fully resolved
problem. Furthermore, slight gradual drifts are usually hard to
recognize and to quantify in its intensity in order to react upon
with an appropriate forgetting degree [8]; and a permanent
forgetting in case of no drift usually leads to a deterioration
of model performance as analyzed in [9].

An automatic splitting of such growing rules causing high
model errors into smaller ones would be thus the most
promising option to solve this problem, however has been only
loosely handled so far in current EFS approaches — see [24]
for a recent survey, where 32 methods are listed and compared:
only three of them, namely AHLTNM [28], eFuMo [29]
and rClass [30], are equipped with splitting methodologies.
AHLTNM relies on hyper-rectangular clusters which are split
along the original axes, thus it does not have the flexibility
for addressing local (growing) data clouds and extracted rules
with arbitrary orientations; similar considerations hold for
eFuMo, which indeed performs rule splits according to the
local error, but an additional parameter is required for checking
significance and furthermore it does not take into account
a possible over-fitting occurrence in case of (many) small
rules. rClass employs the concept of rule size in terms of
measuring its volume for inducing a split, but it does not
take into account whether the rule is still appropriate for
resolving the current relation between inputs and targets (class
labels in this case), because of the absence of system error in
the rule splitting context. Furthermore, it was developed for
classification problems and does not address the regression
context.

In an on-line setting, an automatic splitting requires specific
criteria regarding when-to-split rules and specific functionality
regarding how-to-split rules, which have to be ideally con-
ducted in incremental and single-pass manner (this is opposed
to off-line rule splitting concepts where multiple iterations over
the whole data set can be carried out [31]). The incremental
property is necessary to meet on-line and real-time demands

in stream processing, the single-pass functionality avoids ring-
buffers containing past samples for each rule to be kept in the
memory.

B. Our Approach

We propose a rule splitting methodology for generalized
evolving fuzzy systems operating in incremental single-pass
manner, where rules can appear in arbitrary rotated position in
the multi-dimensional space and thus can form more compact
and accurate rule bases than conventional axis-parallel rules
(as examined in [32]). It comprises the following functionality:
• A splitting condition which checks when to best split

rules in order to reduce the error of the current evolved
fuzzy models. It is based on two criteria: the local error
of rules and the size of the rules. The local error measures
the precision of a rule in its predictions for samples which
are lying nearby the local region the rule represent. If it is
untypically high compared to the other rules, an increased
non-linearity of the learning problem in this local region
might be assumed, which cannot be appropriately mod-
eled by a single rule. However an increased local error
may be also the case when over-fitting — a high variance
error — takes place, especially due to too many small
rules (an effect which is manifested in the concept of
bias-variance error decomposition [33]). Thus, the size of
the rule plays an important role in order to split only those
rules (and associated clusters) with high errors which are
also big enough.

• A splitting algorithm, which shapes two new rules out
of the current rule to be split. It performs a split along
the main principal component direction of the ellipsoidal
rule, i.e. that direction which has the largest eigenvalue.
This ellipsoidal main axis is therefore split into two
halves based on the eigendecomposition of its covariance
matrix (which defines the shape of the rule). The centers
of the two split rules are adequately placed towards the
two mid points between the original center and the two
focal points. The consequent parameters of the two split
rules are directly assigned to the consequent parameters
of the original rule (as starting point).

• For guaranteeing sufficient flexibility of split rules, i.e., to
evolve their shapes and consequent orientations quickly
with new data samples (after a drift occurred), we propose
the inclusion of a forgetting mechanism on older samples
(forming the original rule), whose intensity is steered by
an adaptively changing forgetting factor.

• For guaranteeing higher stability against outliers, a rule
base procrastination strategy is proposed and embedded
during learning. It induces some software technical chal-
lenges in form of a two-layer model evolution stage: 1)
a cluster-layer where each sample is respected equally
and incrementally included in the partitioning and 2) a
rule-layer where only significant clusters are associated
with rules and thus finally used in the rule base when
producing predictions for new query points. Splitting
operates solely on the rule layer, thus only rules having
at least double significance level are split candidates.
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• Update of all statistical help measures to perform a
successful splitting in incremental manner. This includes
the update formula of the local error for all rules and of
the rule size.

Our splitting concept will be embedded in the generalized
smart evolving fuzzy systems approach termed as Gen-Smart-
EFS [32] and evaluated on two real-world data sets (in one
a real occurring drift is known). We compare the effect
of incremental splitting on the accumulated one-step-ahead
prediction error over time with the case when no splitting
is carried out (as in original Gen-Smart-EFS). This will be
done by inspecting the rule evolution trend lines over time, to
compare how many and when rules are evolved by classical
rule evolution and how many and when by splitting.

The results showed significantly increased performance for
engine test bench data, with a moderate increase of the number
of rules due to splitting. In case of on-line data recorded from
rolling mills, a real-occurring gradual drift could be better
compensated when splitting was used: it lead to an error
reduction of about one third compared to the case without
splitting, and this with a moderate number of three splits.

II. GENERALIZED EVOLVING FUZZY SYSTEMS

A. Model Architecture

Our new concepts for incremental rule splitting (see Sec-
tion III below) build upon the generalized smart evolving
fuzzy systems learning approach (Gen-Smart-EFS, GS-EFS)
as published in [32], which employs the generalized version
of TS fuzzy systems, introduced in [34], and which showed
better predictive performance compared to related state-of-the-
art methods. It induces more compact rule bases with similar
or even less model errors than conventional TS fuzzy systems,
as turned out during past studies [35] [29]. This is basically
because of its ability to model piecewise local correlations
between variables in a more compact and accurate way.

In the generalized case, the rules are defined by:

IF ~x IS (about) µi

THEN li(~x) = wi0 + wi1x1 + wi2x2 + ...+ wipxp (1)

where li the hyper-plane defining the consequent of the ith
rule, µi denotes a high-dimensional kernel function, which, in
accordance to the basis function networks spirit, is given by
the multivariate Gaussian distribution:

µi(~x) = exp(−1

2
(~x− ~ci)T Σ−1

i (~x− ~ci)) (2)

with ~ci the center and Σ−1
i the inverse covariance matrix of

the ith rule, allowing any possible rotation and spread of the
rule. This sort of rule premise puts forward a scale-invariant
case and retains inter-correlations among input attributes by
allowing arbitrarily rotated positions of the rules.

The output of a (generalized) TS fuzzy system consisting
of C rules is a weighted linear combination of the outputs
produced by the individual rules (through the li’s), thus:

f̂(~x) = ŷ =
C∑
i=1

Ψi(~x) · li(~x) Ψi(~x) =
µi(~x)∑C
j=1 µj(~x)

, (3)

with µi(~x) the rule firing degree obtained through (2). Thus,
in case of generalized TS fuzzy systems, a single rule can be
fully represented as a triplet of variables (~ci,Σ

−1
i , ~wi).

B. The Core Algorithm for Incremental Model Updates and
Evolution (Gen-Smart-EFS)

In order to be able to fully explain the splitting concepts, we
first provide a compact summary of the basic algorithmic steps
in Gen-Smart-EFS in Algorithm 1 below, initially the number
of rules is set to C = 0 to maintain incremental learning from
scratch.

Algorithm 1: Generalized Evolving Fuzzy Systems —
Core Engine

1) Load a new sample ~x; if it is the first one, Goto Step 6
(there, ignoring the if-part);

2) Elicit the winning rule, i.e. the rule closest to the current
sample, which is then denoted as ~cwin; for the distance
calculation, standard Mahalanobis distance is used (as
on the right hand side in (4) below).

3) Check whether the following criterion is met (the rule
evolution criterion):

mini=1,...,C

√
(~x− ~ci)T Σ−1

i (~x− ~ci) > ri

ri = κp1/
√

2 1.0

(1− 1/(ki + 1))
m (4)

with p the dimensionality of the input feature space and
κ an a priori defined parameter, steering the tradeoff
between stability (update of an old cluster) and plasticity
(evolution of a new cluster) as multiplication factor for
the prediction interval; this is the only sensitive parame-
ter can be optimized during an initial batch modeling
phase (based on first X samples from a stream). ki
denotes the support of the ith cluster (rule) and is elicited
by the number of samples falling into this cluster.
The criterion is based on the statistical concept of the
prediction interval [36] serving as statistical tolerance
region [37], whose boundary can be elicited by the χ2

quantile with p degrees of freedom and at a default
significance level of α = 0.05. The last term on the right
hand side is for the purpose to increase rule significance
at the beginning when the rule is supported by a small
amount of samples, i.e. when ki small; the weighting
exponent m is set to a default value of 4.

4) If (4) is not met, the centre of the winning rule is updated
by

~cwin(kwin + 1) = ~cwin(kwin) + ηwin(~x− ~cwin(kwin))
(5)

and its inverse covariance matrix by (the index win
neglected due to transparency reasons):

Σ−1(k + 1) =

Σ−1(k)

1− α
− α

1− α
(Σ−1(k)(~x− ~c))(Σ−1(k)(~x− ~c))T

1 + α((~x− ~c)T Σ−1(k)(~x− ~c))
(6)

with α = 1
kwin+1 . The former stems from the idea

in vector quantification [38] by minimizing the ex-
pected squared quantization error; the learning gain
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ηwin = 1
kwin

is thereby set in a way that it fulfills
the Robbins-Monroe conditions. The latter is a recursive
exact update, analytically derived with the usage of the
Neumann series, see [39] for full details.

5) If (4) is not met, it is checked whether the updated
winning rule has become significantly overlapping with
any other rule, and if so, whether there exists sufficient
homogeneity among the two overlapping rules in terms
of their consequent functions (indicating a nearly lin-
early continuing trend among the two regions the two
rules represents). Sufficient overlapping is checked by
applying the Bhattacharyya distance [40] on the rule
centers and inverse covariance matrices. Homogeneity in
the output space is checked through the dihedral angle
between the two hyper-planes the consequent functions
of the overlapping rules span up. If both are high
(threshold motivated in [32]), the merging takes places
by

a) weighted averaging of rule centers,
b) weighted adaptation of the inverse covariance ma-

trix of the rule with higher support based on
recursive variance concept plus an additional range
expansion term for better coverage,

c) amalgamation of consequent function using partic-
ipatory learning concept [41].

6) If (4) is met, a new rule is evolved as covering a new
region in the feature space (i.e. having sufficient novelty
content) by setting its center ~cC+1 to the coordinates of
~x and initialize its inverse covariance matrix Σ−1

win by
setting it to a diagonal matrix with entries 1 divided by a
small fraction, i.e. 1/100, of the variable ranges (= initial
rule spreads); increase the number of rules C = C + 1.

7) Perform recursive fuzzily weighted least squares
(RFWLS) including forgetting factor λ (default λ = 1
which means no forgetting), to update the consequent
parameters ~w of all C rules. This is the standard
consequent update scheme in most of the current EFS
approaches and can be inspected in detail in the hand-
book survey [24] and in many other papers about EFS.

8) Goto Step 1.

Obviously, this algorithm is able to perform incremental pa-
rameter adaptation and rule evolution from scratch. However,
in some cases it might be beneficial that an initial model is
learnt, e.g., for representing it to an expert or operator before
it is going to be installed on-line or for checking the whole
’modelability’ of the problem. For such cases, Gen-Smart-EFS
has been extended to a robust batch learning variant in [42]
(termed as Rob-GenFIS), where, once the number of rules are
learnt, the rule centers and inverse covariance matrices are
updated in multiple optimization runs over the whole data set
with a specific decreasing learning gain, to assure convergence.
The robustness aspect also concerns the estimation of the
consequent parameters which is done separately on the whole
data set, once the rules antecedents are optimally placed.
Therefore, it employs the concept of elastic net regularization
[43], which is adopted for learning of the consequent param-
eters. It incorporates a convex combination of Lasso [44] and

ridge regularization term [33], thus its optimization problem
in the context of fuzzy systems consequent training is defined
as (for the ith rule):

Ji =
N∑

k=1

Ψi(~x(k))e2
i (k) + λ

p∑
j=1

(αw2
ij + (1− α)|wij |)

−→ min
~wi

i = 1, ..., C (7)

with λ the regularization parameter and α a parameter in [0, 1],
steering the degree of influence of the ’Lasso term’

∑p
j=1 |wij |

versus the ’ridge term’
∑p

j=1 w
2
ij , with p the dimensionality of

the input feature space. This mechanism is useful in resolving
the over-fitting situation due to the curse of dimensionality
effect, provided that the regularization parameter is properly
chosen. The problem in (7) can be efficiently solved through
a quadratic programming approach, termed as LARS-EN, see
[45].

III. INCREMENTAL RULE SPLITTING IN GENERALIZED
EFS

During the evolving modeling process from data streams,
the following situations may arise:
• Dynamic changes such as drifts in the process arise which

are of slow gradual nature and cause certain rules to
grow larger and larger over time; these changes are often
not intense enough in order to trigger the rule evolution
criterion. In our case, this means that there are no samples
during and after the change which are lying significantly
out of the boundaries of the prediction interval in order
to meet (4); the samples are just gradually expanding
the rule ellipsoid — see Figure 1 for an example. In
alternative density-based rule evolution approaches, the
density of the new drifted data cloud may be significantly
lower than those of older clouds such that no new rule
is evolved either. Typically, in such cases automatic drift
detection methods, as, e.g., discussed in [9], are not able
to detect a drift, either. Thus, no appropriate forgetting
factor can be set (based on a detected drift intensity),
which would allow the rule to adapt to the new drifted
situation.

• The parameter, which is most responsible for the trade-
off to update old rules versus to evolve new ones, is
inadequately set for the current data stream modeling
problem (such a parameter is typically present in all EFS
approaches! [24]); in our case, this means that κ is set too
high such that not enough rules are evolved to represent
the new, drifted data distribution adequately→ this leads
to older rules covering a too large area — see Figure 1
for an example.

In order to resolve such unpleasant situations, we suggest
an incremental rule splitting strategy, which can act in fully
single-pass manner, i.e. based on single loaded samples which
can be immediately forgotten after they have been processed.
Thus, it does not require any ring-buffers storing samples
which formed the rules in the past [39], neither does it require
any batch-type re-estimation steps as being used in batch
clustering approaches with splitting concepts embedded [46]
[47].
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Figure 1. left: rule growing by gradual drifts over time not necessarily triggering the evolution of a new rule; right: bad approximation of a non-linear trend
by only 2 rules (due to an inappropriate parametrization of the rule evolution criterion), the larger rule cannot resolve the non-linearity degree adequately.

Figure 2. Over-fitting of a pure logarithmic trend between input and target
in case of the extraction of too many fuzzy rules → high local errors

A. Splitting Condition

Regarding the issue when-to-split rules, we suggest a condi-
tion which is based 1.) on the local model error (error per rule)
and 2.) on the size of the rule. The first issue is motivated by
the fact that rules with high local errors point to regions where
the non-linearity is not sufficiently resolved by the current rule
base — as shown in the right image in Figure 1. The second
issue checks whether the rule is big enough to be a candidate
for splitting. The reason for this is that high local errors can
also arise in case when there is an over-fitting effect due to
too many small rules (where typically most of them cover only
very sparse regions). Figure 2 underlines this fact by showing
a logarithmic trend in the data (marked by a dashed line),
which is modelled by a too complex fuzzy model (there are
too many rules indicated by ellipsoids). This over-fits the real
trend, thus it induces a high model error. In such a case, a
further splitting of a small rule into two rules would make the
situation even worse.

In order to avoid additional parameters to be tuned in form
of fixed thresholds on large errors and large rule sizes, we
employ the concept of statistical process control [48] and
trigger a splitting of a rule when the following conditions is

met:

erri >
1

C

C∑
j=1

errj + n ∗

√√√√ 1

C

C∑
j=1

(errj − err)2 ∧

sizei >
1

C

C∑
j=1

sizej + n ∗

√√√√ 1

C

C∑
j=1

(sizej − size)2 (8)

with n a multiplication constant typically set to 1 or 2 and
with erri the error of the ith rule, which is defined by:

erri =

∑N
k=1(y(k)− ȳi(k))2Ψi(~xk)∑N

k=1 Ψi(~xk)
(9)

,i.e. as a weighted sum of sample-wise squared errors. Thus,
err and size denote the mean over all local errors and the
mean over all cluster/rule sizes, respectively. ȳi(k) denotes
the prediction of the local hyper-plane on the kth sample, and
the weights are given by the normalized rule activation levels:

Ψi(~xk) =
µi(~xk)∑C
j=1 µj(~xk)

(10)

The weights are important to assure locality of the error, i.e.
samples which are far away from rules should have little or
no influence on their prediction errors. The normalization in
(10) is important, as samples lying close to the border of
a local region (modeled by a rule) and far away from all
other rules should have a significant impact on the local error
of that region where it lies close to — which would not
be the case when using the non-normalized rule activation
levels (all rule membership degrees would be low). It could
be then expected that a gradual, moderate drift starts to arise
→ splitting required (see motivation above). The local error
of the ith rule can be easily updated by

erri(N + 1) =

erri(N)sumΨi
(N) + (y(N + 1)− ȳi(N + 1))2Ψi(~xN+1)

sumΨi
(N) + Ψi(~xN+1)

(11)
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Figure 3. Rule splitting example, the original ellipsoid shown in solid dark
(black) line is split into two shown in dotted grey (blue) lines

with sumΨi
(N) the sum of the normalized membership values

of the ith rule up to the current sample N , updated by
sumΨi(N + 1) = sumΨi(N) + Ψi(~xN+1).

The size of the ith rule given by sizei is determined by
the covariance matrix based definition of the volume of the
ellipsoid defined by the rule [49], thus calculated as:

sizei =
2 ∗ det(Σ−1

i ) ∗ πp/2

Γ(p/2)
(12)

with p the input dimensionality, det the determinant and Γ the
gamma function.

B. Splitting Algorithm

In each incremental update cycle, only the rule recently
updated need to be checked whether it meets the criterion
in (8). Thus, the condition in (8) is embedded in Step 4 of
Algorithm 1 as Step 4b. The splitting operations are then
conducted inside Step 4b along the major principal component
direction (having the largest eigenvalue), as this corresponds
to the direction where the ellipsoid of the rule has the largest
spread and thus the most impact on its bad local error. Splitting
is done within a half-half situation, so to split the rule into two
equal portions, which are then further updated and thus shaped
into the right direction upon receiving new data samples. This
is the most intuitive way, achieving touching rules with no
overlap, but still covering the input space well, and without
requiring extra parameters for steering the overlap degree.
Figure 3 shows an example, where the rule shown with a dark
solid ellipsoidal line is split into two rules shown as dotted
grey lines. The centers are thereby set in the middle between
the center and the outer focal points of the first (main) principal
component axis [31].

Formally, this can be achieved by:

~ci(split1) = ~ci + ai

√
λi
2

~ci(split2) = ~ci − ai
√
λi
2

(13)

where λi corresponds to the largest eigenvalue of the co-
variance matrix of rule i, i.e. λi = max(Λ) and ai to
the corresponding eigenvector, which can both be obtained
through classical eigendecomposition of the covariance matrix
(which is symmetric, thus the solutions exist):

Σi = AΛAT (14)

where A is a matrix of eigenvectors stored in columns and Λ a
diagonal matrix containing all eigenvalues of Σi in descending
order. Furthermore, in order to split the shape of the rules also
into two halves as shown in Figure 3, the largest eigenvalue
in Λ is set to a fourth of its value, because taking the square-
root of it would then trigger the length of the corresponding
ellipsoidal axis reduced to its half. This means, the two new
covariance matrices for the split rules are obtained by back-
multiplication of the matrices from the eigendecomposition:

Σi(split1) = Σi(split2) = AΛ∗AT , Λ∗jj = { Λjj j 6= 1
Λjj

4 j = 1
(15)

where Λ11 is assumed to be the entry for the largest eigenvalue.
Please note that the orientation of the principal component
having the largest eigenvalue remains the same for both split
rules (only its length is halved) at the time of their birth (later
they will be further adjusted with new data), so no eigenvector
needs to be modified. This guarantees very fast updates.

Algorithm 2 summarizes the functionally necessary splitting
operations step-by-step — to be embedded as Step 4b into
Algorithm 1, after the winning rule has been updated when
(4) is not met. It can be also embedded in other EFS learning
engine which employ Gaussian rules.

Algorithm 2: Incremental Rule Splitting
Input: new sample ~x, current fuzzy rule base containing C
rules, local errors of all rules err1, ..., errC .

1) Update all local errors of all rules by applying (11).
2) Update covariance matrix of winning rule Σwin by

Σwin(k+1) = 1
k+1 (kΣwin(k)+ k

k+1 (~cwin−~x)T (~cwin−
~x)) with k = kwin the number of past samples support-
ing the winning rule.

3) For all rules i = 1, ..., C:
4) Check Condition (8) using (12), where Σ−1

i is given as
permanently updated in Algorithm 1 by (6).

5) If Condition (8) is met for Rule i,
a) Perform the eigendecomposition of the ith rule by

using (14).
b) Receive λi = max(Λ) and its corresponding

eigenvector ai.
c) Set the centers of the new, split rules ~ci(split1)

and ~ci(split2) according to (13).
d) Calculate the covariance matrix of the new split

rules Σi(split1) and Σi(split2) according to (15).
e) Set the number of data samples supporting the split

rules to the half value of the original rule, i.e.
ki(split1) = ki(split1) = ki/2.

f) Set the error of both split rules to the average
local error over all rules, i.e. erri(split1) =
erri(split2) = 1

C

∑C
i=1 erri.

g) Set the consequent parameters of both split rules
to the consequent parameters of the original rule,
i.e., ~wi(split1) = ~wi(split2) = ~wi

h) Set the inverse Hessian matrices of both split rules
to the inverse Hessian Pi of the original rule
(inverse Hessian is required in the RWFLS update).

i) Overwrite Rule i with the first split rule (and all of
its associated variables), Rulei ← Rulei(split1).
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Figure 4. The approximation behavior due to a splitting of the large rule
shown in Figure 1 into two smaller ones, which are further updated with
the new samples (shown as crosses) to achieve the correct trend in this local
region

j) Introduce a new Rule RuleC+1 and assign the
second split rule (and all of its associated variables)
to it, RuleC+1 ← Rulei(split2).

k) Increase the number of rules, C = C + 1.
6) End For.

The consequent parameters and the inverse Hessian matrices,
which are required in the RWFLS update in order to avoid
time-intensive and instable matrix inversions, are indeed di-
rectly transferred to both split rules, but will become updated
when new samples come in, in order to be turned into the right
direction of the locally increased non-linearity. Figure 4 exem-
plifies this issue on the basis of the bad fuzzy approximation
due to the enlarge ruled shown in Figure 1.

C. Increasing Flexibility of Split Rules

Indeed, the current splitting methodology is able to com-
pensate drifts which have affected model performance in a
negative way by increasing the flexibility of the fuzzy system
in local regions (one rule is split into two). However, if this rule
has been supported by many samples before, the likelihood is
high that the shapes and consequent parameters of the two
split rules are ’frozen’ because of still having high support
from past samples — e.g., compare with the case shown
in the right image in Figure 1: many samples formed the
rules, half of them are then still supporting two split rules
(according to Step 4e.) in Algorithm 2), as samples are almost
equally distributed among the input feature (x-axis). Then, new
samples falling into the region will not have enough weight to
turn the shapes and hyper-planes of the two rules sufficiently
enough to appropriately model the regression trends in the two
split regions. This means that indeed the rule size is reduced,
but the high local error will remain in the two split regions to
a similar extent as before.

Therefore, we propose a dynamic forgetting strategy, which,
immediately after the split has been conducted, embeds a
forgetting factor λ ∈ [0.9, 1.0[ in the update process of the
rule shapes and hyper-planes. The lower its value becomes, the

faster older data is forgotten, thus the higher new samples are
weighted into the update process, thus the more the two split
rules are able to turn their shape adequately. The forgetting
factor is initialized with a value of 0.9 (due to good past
experience in case of drifts, see, e.g. [9]), which, according
to exponential forgetting strategy λN−k with N denoting the
current sample index, is equivalent to the case that only the
latest 20 samples receive a weight bigger than ε = 0.1

In order to allow convergence of the shapes and hyper-
planes of the two split rules, λi(split1/2) is recursively
increased step-wise towards 1.0 over new incoming samples
~xN+1,... by:

λi(split1) = min(λi(split1) + 0.01 ∗Ψi(~x)(split1), 1.0)

λi(split2) = min(λi(split2) + 0.01 ∗Ψi(~x)(split2), 1.0)
(16)

with Ψi(~x)(split1) the normalized membership degree of the
first split rule to the current sample ~x, as defined in (3). The
justification of this formula is that new samples falling nearby
the split rules (thus with high Ψi(~x)’s) should already have a
high significance and influence for ’forming’ the new shapes
and hyper-planes. Thus, λ can be increased more intensively
than in case of samples lying farer away.

The forgetting factors λi(split1) and λi(split2) are inte-
grated into the update of the antecedents and consequents of
the two split rules in the following way:
• For the antecedent parts, the influence of older samples

in the rule centers and inverse covariance matrices of the
split rules is decreased to:

ki(split1/2) =ki(split1/2)− ki(split1/2)

∗min(λi(split1/2), 0.99) (17)

This automatically increases the learning gain ηi =
0.5

ki(split1/2) for centers and α = 1
ki(split1/2)+1 for the

inverse covariance matrix updates, and helps out the
cluster from its converged position and shapes, as a
stronger rule movement for the next samples is affected.

• For the consequent parts, the RWFLS estimator
provides a possibility to integrate λi(split1/2)
in a way that convergence to the minimum
of the exponentially weighted least squares
objective for the two split rules Ji(split1/2) =∑N

k=1 λi(split1/2)N−kΨi(~x(t))e2
i (k) −→ min ~wi

with
ei(k) = y(k)− ŷ(k), is granted in each update step, see
[15]. In this update scheme for consequent parameters,
past samples contribute with exponentially decreasing
weights.

D. Increased Learning Robustness with Two-Layer-Stage
Model Learning

Another important aspect in learning from streams con-
cerns an adequate treatment of outliers by omitting them
in the model update process. This assures that models are
not ’spoiled’ by outliers, although in case of evolving fuzzy
systems, due to their localized learning engines, the effect of
outliers is expected to be much weaker than in case of global
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regression models, but still they may contribute negatively to
the inference process and thus to the final model output.

We propose a so-called rule procrastination strategy which
is supported by a two-layer-stage model learning and adapta-
tion. The basic idea is that a new cluster is indeed generated
once the evolution criterion in (4) is fulfilled, but it is not
associated with a rule, thus neither embedded in the fuzzy
rule base, before a significant number of samples confirm the
new cluster, i.e., fall into its region of influence and form its
center and shape further.

Algorithmically, this means that all the steps in Algorithm
1 are run through on cluster level in the same way as stated
(thus having C clusters which are updated by Steps 4 und 5
and new clusters evolved in the same manner as rules in Step
6), but an additional step is introduced between Step 6) and
7) which then assigns only significant clusters ci, i = 1, ..., C
to fuzzy rules Rj , j = 1, ..., Cr ≤ C:

Step 6b) j = 1; For i = 1, ..., C: if ki ≥ S then
Rj = ci, j = j + 1.

with S the minimal number of samples such that a cluster is
accepted as rule (in our case set to 3 in all experiments below).
The Cr fuzzy rules (instead of C ones) are then used in the
inference process in (3). Splitting is then only performed
on the rule base containing the Cr rules (substituting C in
Algorithm 2), as only their local errors contribute to the
overall model error (insignificant clusters are not part of the
inference process). An additional criterion then automatically
emerges in order to check whether two rules obtained from
a split (of Rule i) would be still supported by a significant
number of samples, thus the condition ki ≥ 2 ∗ S has to be
added to our original splitting condition (8), guaranteeing that
both the two split rules are supported by at least S samples.

Software-technically, it is a bit more tricky as clusters and
rules have to be handled in parallel and have to be associated
with links, i.e. it has to be known at any stage of the stream
learning process which cluster is associated with which rule
and which cluster to no rule. This leads to a two-layer model
building process, whose concept is visualized in Figure 5.

IV. EXPERIMENTAL SETUP

A. Two Application Scenarios

a) Real-world application: engine test benches: The first
real-world application we are dealing with is the supervision
of the behavior of a car engine during simulated driving oper-
ations at an engine test bench. These include the engine speed
and torque profiles during an MVEG (Motor Vehicle Emis-
sions Group) cycle, a sportive driving profile in a mountain
road and two different synthetic profiles. Several sensors at the
engine test bench have been installed which measure various
important engine characteristics such as pressure of the oil,
various temperatures or emission gases (NOx, CO2 etc.). On-
line data have been recorded containing 22302 measurements
and 42 channels (from the sensors) in sum for evaluation
purposes. The main task is to build an accurate prediction
model for NOx emission, the most important gas according

to strict standards in the ISO-norm to meet the requirements
for newly built cars. NOx measurements are costly and thus
should be minimized during the car development phase. The
number of channels could be reduced to 8 most important
input channels for NOx approximation, based on a modified
variant of forward selection [50], emphasizing the selection
for non-linear (fuzzy) models. For further description of the
application, please also refer to [51].

b) Real-world application: rolling mills data: This ap-
plication originates from metal industry, in particular from
the tension-leveler part of the cold rolling process within
the biggest steel company of Austria. Tension leveling is
a process used in the steel industry to remove any shape
defects present in coil material [52]. It is usually the final and
most sensitive process in the production chain before the cold
rolled product is delivered to the customer, thus its automatic
supervision is urgently requested; for a detailed description,
please refer to [53] [54], where this application has been used
for fault detection and isolation research and development
purposes. From a set of 240 measurement channels recorded
by a large-scale multi-sensor network along the production
chain, SysID models were extracted based on approximately
9450 recorded on-line samples to establish causal relations
and dependency models, which also have predictive spirits
(time lags in the variables were integrated). In one particular
relationship (containing 4 input and 1 target channels), a real-
occurring (gradual) system drift could be observed, starting at
around sample 2500. This data subset is used in this paper
for checking whether our splitting approach can dynamically
compensate the drift and really brings improvement in the
model error trends opposed to classical rule evolution.

B. Evaluation Strategies
The evaluation strategy follows the interleaved-test-and-

then-train procedure [55], also termed as accumulated one-
step-ahead prediction error/accuracy. It is based on the idea
to measure model performance in one-step ahead cycles, i.e.
based on one newly loaded sample only. In particular, the
following steps are carried out:

1) Load a new sample (the N th).
2) Predict its target ŷ using the current evolved model M .
3) Compare the prediction ŷ with the true target value y

and update the performance measure:

pm(y, ŷ)(N)← upd(pm(y, ŷ)(N − 1)) (18)

4) Update and evolve the model M .
5) Erase sample and goto Step 1.

In our case, it is a perfect measure to track the prediction error
development over time in an accumulated fashion. We will
show this development by using one-dimensional plots, were
the x-axis will represent the time line (= sample number) and
the y-axis the accumulated error up to the corresponding sam-
ple/time steps. pm denotes a general updateable performance
measure, for which we use the percentage mean absolute error,
which is updated by:

MAE(N) =
(N − 1)MAE(N − 1) + |y(N)− ŷ(N)|

N ∗ range(y)
(19)
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Figure 5. Two-layer model building process during incremental learning of generalized fuzzy systems, embedding rule evolution and rule splitting functionality;
please mind the two layers and the association mapping in-between them: newly evolved clusters are not directly associated with rules, first they have to
become significant; split clusters are already significant due to the extended split condition ((8) ∧ki ≥ 2 ∗ S), thus one cluster obtained from the split
overwrites the original cluster (and its associated rule) and the other extends the cluster partition and the rule base by an additional cluster and rule; an updated
cluster may be checked whether it has become significant (here for Cluster #3) and if so, a new rule is added as well (here the Cr +1th) and associated with
this cluster; clusters which are already linked with rules (e.g., Cluster 1 and C) do not need to be checked whether they became significant.

with range(y) = max(y)−min(y), and MAE(0) = 0; y(N)
denotes the real measured target and ŷ(N) the predicted target
in the current, the N th, sample. We will compare the error
trend lines over time with and without splitting included.

Additionally, we will examine the structural change of the
fuzzy rule base over time in terms of a.) classical rule evolution
(as in original Gen-Smart-EFS) and b.) rule splitting according
to our approach. In all cases, we perform an initial model
training on the first 500 samples in order to optimize the
parameter κ (responsible for rule update versus rule evolution),
such that we receive a fair comparison among the runs —
otherwise, we could set κ in advance to a large value in order
to favor rule splitting, because then only very few (too large)
rules will be evolved, and then splitting will obviously always
improve the model.

V. RESULTS

A. Engine Test Benches
The error trend lines for the engine test bench data are

visualized in Figure 6. It can be easily recognized that a
moderate splitting using n = 1 in (8) leads to a slight
improvement of the error trend line, compared to the case
when no splitting is performed. This is achieved with a slight
increase of the number of rules, as can be seen in the left image
in Figure 7, where the lower solid line shows the evolution
indicator: this is set to 1 in case of classical rule evolution,
and set to 2 when splitting is performed, whereas the dashed
line shows the evolution of the number of rules. Thus, a split is
only carried out three times, two times around sample 1200,
one time around sample 7200. But, obviously the first two
splits bring in significant reduction in error trend line, which
is rising to a much lower value than in case of no splitting,
compare with Figure 6. The third split, however, do not have
a real effect (neither positively nor negatively), as both trend
lines continue in parallel in the same manner.

Figure 6. Error trend lines over time for engine test bench data when no
splitting is applied (dotted line) and when splitting in two variants is applied:
one time a moderate splitting in case when setting n = 1 in the splitting
condition (8) (dashed line) and one time a more intense splitting in case
when setting n = 2.

Whenever a more intense splitting is used due to a setting of
n = 2 in (8), the error trend line can be drastically improved
as shown by the solid line in Figure 6. This is mainly because
of the compensation of the raising error at the beginning of the
learning process (around Sample 1000-1700). As can be seen
from the right image in Figure 7, a lot of splitting operations
are performed during this time frame, which are obviously
necessary to account for a changing drivers profile in that
region and thus to compensate an inappropriate setting of κ
(out of the first 500 samples). During the middle phase, some
sporadic splitting actions take place which have no effect on
the trend line. During the end phase, again much more splitting
operations are triggered, which finally can omit the (slightly)
increasing error curve trend line (from around 1.8 to around
1.95 — as can be observed in Figure 6) in case when no
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Figure 7. Left: Rule evolution trend line over time (dashed line) for a moderate splitting during the modeling on engine test benches and the indicator
whether classical evolution or splitting was conducted in solid line; right: the same with a more intense splitting (n = 2) — please mind the different scales
in the y-axis

Figure 8. Error trend lines over time for rolling mills data when no splitting
is applied (dashed line) and when splitting is applied in case when setting
n = 1 in the splitting condition (8); the start of the drift is indicated by the
vertical dotted line

splitting is carried out.

B. Rolling Mills (with real occurring drift included)

The error trend lines for the rolling mills data are visualized
in Figure 8. It can be easily recognized the significant impact
of the splitting process on the error trend lines, as this improves
much its level by about one third after the start of the drift at
around sample #2500 (indicated by the dotted vertical line).
When inspecting the rule evolution trend line in Figure 9
after the drift happened, it can be realized, by comparing the
dashed with the dotted line (representing rule evolution trend
with and without splits), that three rules are generated due to
splitting whereas only one rule is born due to the classical
evolution: leaving this one rule bearing along leads to the
worse error trend line in Figure 8. Obviously, the drift is not
intense enough (as also confirmed by experts which observed
a moderate gradual drift) in order to trigger more classical
rule evolutions. Instead available rules are growing, which
then model the data (and the associated regression context)
before and after the drift within a ’wide-spread region’ with

Figure 9. Rule evolution trend line over time for a moderate splitting with
n = 1 during the modeling on rolling mills data and the indicator whether
classical evolution or splitting was conducted in solid line

low accuracy (note that the size of the rule also has to be big
enough such that a split is triggered). Latter additional rules
are split at around sample #5500 and #6500, being responsible
that the error trend line decrease better towards the end of the
stream than when applying no splits.

VI. CONCLUSION AND OUTLOOK

We proposed a rule splitting concept for generalized evolv-
ing fuzzy models in case of streaming regression problems,
which is capable to be performed in fully on-line and single-
pass manner. It directly acts on the multi-dimensional rule
kernel functions employing the eigenvalue decomposition of
the inverse covariance matrix, and thus does not require any
back-projections and axis-parallel splits. By employing two
splitting conditions, it assures that no over-fitted situations are
further split (which would even increase the over-fitting and
the local error of rules). Its ability to adequately compensate
gradual drifts which cause an untypical growth of rules leading
to high model errors has been underlined by several experi-
ments on streaming data recorded at two different application
scenarios: rule splitting lead to a higher flexibility of evolving
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fuzzy models to account for changes (drifts) and thus could
finally reduce the error trend lines over time significantly.

Future work includes (i) the embedding of sample signifi-
cance in the statistical process control equation (8) for deciding
when to split rules for the purpose to dynamically change the
parameter n and (ii) the integration of the ’smartness’ aspect
(dynamic dimensionality reduction) in the whole evolving
learning process.
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